sábado, 13 de agosto de 2016

SEGUNDA LEY DE NEWTON


SEGUNDA LEY DE NEWTON

 

OBJETIVO:

El alumno será capaz de construir un diagrama de cuerpo libre que represente todas las fuerzas que actúan sobre un objeto que se encuentra en equilibrio traslacional.

 

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo . La constante de proporcionalidad es la masa del cuerpo , de manera que podemos expresar la relación de la siguiente manera :

F=ma

Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:

F = m a

 

 

La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N . Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2 , o sea,

1 N = 1 Kg · 1 m/s2

La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a . Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.

Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad , es decir:

p = m · v

La cantidad de movimiento también se conoce como momento lineal . Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:

La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir

F = d p /dt

De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:

F = d(m· v )/dt = m·d v /dt + dm/dt · v

Como la masa es constante

dm/dt = 0

y recordando la definición de aceleración, nos queda

F = m a

tal y como habiamos visto anteriormente.

 

Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento . Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:

0 = d p /dt

es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo ( la derivada de una constante es cero ). Esto es el Principio de conservación de la cantidad de movimiento : si la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo .

 

domingo, 19 de abril de 2015

Teorema de pitagoras

Si el triángulo tiene un ángulo recto (90°)...
... y pones un cuadrado sobre cada uno de sus lados, entonces...
... ¡el cuadrado más grande tiene exactamente la misma área que los otros dos cuadrados juntos!
El lado más largo del triángulo se llama "hipotenusa", así que la definición formal es:

En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (llamamos "triángulo rectángulo" a un triángulo con un ángulo recto)



Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²):
a2 + b2 = c2

¿Seguro... ?

Veamos si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulo recto, así que la fórmula debería funcionar.
Teorema de Pitágoras
Veamos si las áreas son la misma:
32 + 42 = 52

Calculando obtenemos:
9 + 16 = 25


¡sí, funciona!

¿Por qué es útil esto?

Si sabemos las longitudes de dos lados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. (¡Pero recuerda que sólo funciona en triángulos rectángulos!)

¿Cómo lo uso?

Escríbelo como una ecuación:
Triángulo abca2 + b2 = c2

Ahora puedes usar álgebra para encontrar el valor que falta, como en estos ejemplos:
 
Triángulo rectángulo
a2 + b2 = c2
52 + 122 = c2
25 + 144 = 169
c2 = 169
c = √169
c = 13
Triángulo rectángulo
a2 + b2 = c2
92 + b2 = 152
81 + b2 = 225
Resta 81 a ambos lados
b2 = 144
b = √144
b = 12                        
 
 

Perímetro y are de polígonos, y de círculos

Área del círculo y polígonos

   1. Longitud de la circunferencia
   Los segmentos que unen el centro con los puntos de la circunferencia se llaman radios.
    El segmento que pasa por el centro y une dos puntos de la circunferencia se llama diámetro. Equivale a dos radios.

    Si tenemos una moneda y ponemos pintura en su borde, al desplazarla en un  papel hasta dar la vuelta completa, dejará una marca como la del dibujo. La longitud de esa marca es tres veces la longitud del diámetro y un poco más.
    Si la circunferencia de la moneda mide 44 cm y el diámetro 14,012738 cm, podemos hallar que 44 : 14,012738  = 3,14. Por tanto, el diámetro cabe tres veces en la circunferencia y sobra un poco más que es 0,14. El número 3,14 se llama p (pi).
    Longitud de la circunferencia = 3,14 x longitud de su diámetro. Como el diámetro es igual a dos radios también se puede decir que la longitud de la circunferencia = p x 2r = 2 p r.
    Ejemplo: Si el diámetro de una circunferencia es 16 cm, su longitud será: 3,14 x 16 = 50,24 cm.


     2.- Área del círculo     La fórmula para calcular el área del círculo = p x r2.     r2 significa que multiplicamos el radio por el radio.     Ejemplo: Si un círculo tiene 8 m de radio su área será p x 82 = 3,14 x 8 x 8 = 200,96 m2.            Realiza estos ejercicios sobre papel y contesta pulsando una contestación en cm2:

   
    4.- Perímetro del polígono regular
    El perímetro es la suma de todos sus lados. En el dibujo, el lado del pentágono mide 7 dm. El perímetro será 7 +7 + 7 + 7 + 7 = 35 dm; perímetro = 7 x 5 = 35 dm.  Perímetro = un lado x número de lados.
 


     5.- Área de los polígonos regulares
    Este exágono regular está dividido en 6 triángulos. El triángulo ABO tiene de altura el segmento a. Este segmento se llama apotema del polígono.
    El área de cada triángulo valdrá el producto del lado por la apotema, dividido por 2; l x a / 2.
    Como tenemos 6 triángulos, el área del exágono es 6 x l x a / 2.
    El área del polígono regular es igual a la mitad del producto del perímetro por la apotema.





 
 

lunes, 13 de abril de 2015

Triangulos congruentes y semejantes



CONGRUENCIA Y SEMEJANZA DE TRIANGULOS

Congruencia de triángulos



En matemáticas, dos figuras de puntos son congruentes si tienen los lados iguales y el mismo tamaño (o también, están relacionados por un movimiento) si existe una isometría que los relaciona: una transformación que es combinación de translaciones, rotaciones y reflexiones. Por así decirlo, dos figuras son congruentes si tienen la misma forma y tamaño, aunque su posición u orientación sean distintas. Las partes coincidentes de las figuras congruentes se llaman homólogas o correspondientes.


Criterios de congruencia de triángulos
Los criterios de congruencia de triángulos nos dicen que no es necesario verificar la congruencia de los 6 pares de elementos ( 3 pares de lados y 3 pares de ángulos), bajo ciertas condiciones, podemos verificar la congruencia de tres pares de elementos.
Primer criterio de congruencia: LLL
Dos triángulos son congruentes si sus tres lados son respectivamente iguales.
a ≡ a’
b ≡ b’
c ≡ c’
→ triáng ABC ≡ triáng A’B'C’

Segundo criterio de congruencia: LAL
Dos triángulos son congruentes si son respectivamente iguales dos de sus lados y el ángulo comprendido entre ellos.
b ≡ b’
c ≡ c’
α ≡ α’
→ triáng ABC ≡ triáng A’B'C’

Tercer criterio de congruencia: ALA
Dos triángulos son congruentes si tienen un lado congruente y los ángulos con vértice en los extremos de dicho lado también congruentes. A estos ángulos se los llama adyacentes al lado.
b ≡ b’
α ≡ α’
β ≡ β’
→ triáng ABC ≡ triáng A’B'C’

Cuarto criterio de congruencia: LLA
Dos triángulos son congruentes si tienen dos lados respectivamente congruentes y los ángulos opuestos al mayor de los lados también son congruentes.
a ≡ a’
b ≡ b’
β ≡ β’
→ triáng ABC ≡ triáng A’B'C’



Semejanza de Triángulos:

El concepto de semejanza corresponde a figuras de igual forma, pero no
necesariamente de igual tamaño.
Una semejanza, es un coaguló geométrico difundido de rotación (una rotación y una posible reflexión o simetría axial). En la rotación se pueden cambiar los lados y la radiación de una materia pero no se altera su coagulo.
En el caso del triángulo, la forma sólo depende de sus ángulos (no así en el caso de un rectángulo, por ejemplo, donde uno de sus ángulos es recto pero cuya forma puede ser más o menos alargada, es decir que depende del cociente base / altura).
Se puede simplificar así la definición: dos triángulos son semejantes si sus ángulos son iguales dos a dos.
En la figura, los ángulos correspondientes son A = A', B = B' y C = C'. Para denotar que dos triángulos ABC y DEF son semejantes se escribe ABC ~ DEF, donde el orden indica la correspondencia entre los ángulos: A, B y C se corresponden con D, E y F, respectivamente.
Una similitud tiene la propiedad (que la caracteriza) de multiplicar todas la longitudes por un mismo factor. Por lo tanto las razones longitud imagen / longitud origen son todas iguales, lo que da una segunda caracterización de los triángulos semejantes:
Dos triángulos son semejantes si las razones de los lados correspondientes son congruentes.





Criterios de semejanza de triángulos.

1.-Dos triángulos son semejantes si tienen dos ángulos iguales.
2.-Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo que forman.
3.- Dos triángulos son semejante si sus lados son proporcionales.



Para que dos triángulos sean semejantes es suficiente con que se verifique una de las siguientes condiciones:

1. Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales:
2. Dos triángulos son semejantes si tienen los lados proporcionales:
3. Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo comprendido:

 
 

propiedades de paralelogramos y triangulos

Propiedades de los paralelogramos
Definiciones
Paralelogramo: cuadrilátero que tiene sus lados opuestos paralelos
Rombo: paralelogramo que tiene sus 4 lados iguales
Rectángulo: paralelogramo que tiene sus 4 ángulos iguales
Cuadrado: paralelogramo que tiene sus 4 lados iguales y sus 4 ángulos iguales

Propiedades de los Paralelogramos
1ra. Propiedad.- En todo paralelogramo los lados opuestos son paralelos.
2da. Propiedad.- En todo paralelogramo los lados opuestos son iguales.
3ra. Propiedad.- En todo paralelogramo los ángulos opuestos son iguales
4ta. Propiedad.- En todo paralelogramo los ángulos adyacentes a un mismo lado son suplementarios
5ta. Propiedad.- La diagonal de un paralelogramo lo divide en 2 triángulos congruentes
6ta.Propiedad.- En todo paralelogramo las diagonales se bisecan mutuamente
7ta. Propiedad.- Las diagonales del rectángulo son iguales.
8ta. Propiedad.- Las diagonales del rombo son mediatrices entre sí y bisectrices de sus ángulos.
9ta. Propiedad.- Las diagonales de un cuadrado son iguales, mediatrices entre sí y bisectrices de sus ángulos. Forman 4 ángulos congruentes
 
 
 
Propiedades de los triángulos
 
 
1 Un lado de un triángulo es menor que la suma de los otros dos y mayor que su diferencia.
a < b + c
a > b - c

2La suma de los ángulos interiores de un triángulo es igual a 180°.
A + B + C =180º

triángulo
3 El valor de un ángulo exterior de un triángulo es igual a la suma de los dos interiores no adyacentes.
α = A + B
α = 180º - C

triángulo
4En un triángulo a mayor lado se opone mayor ángulo.

triángulo
5 Si un triángulo tiene dos lados iguales, sus ángulos opuestos también son iguales.
 
 

Angulos formados al cortar dos paralelas de una transversal

Ángulos formados por dos rectas paralelas y una transversal
Al cortar dos paralelas, con una tercera recta llamada secante, se forman ocho ángulos. Cuatro en cada punto de intersección.


ÁNGULOS INTERNOS

Son los 4, 3, 6 y 5.


ÁNGULOS EXTERNOS

Son los 1, 2, 8 y 7.


ÁNGULOS ALTERNOS

Son los pares de 3 y 5, 4 y 6, 1 y 7, además de 2 y 8.
Los ángulos alternos pueden ser:

  • Alternos internos: 3 y 5, 4 y 6. Además, cada par tienen la misma medidad.
  • Alternos externos: 1 y 7, 2 y 8. Igual que con los anteriores, cada par tiene la misma medida.


 
 

Angulos complementarios

Dos ángulos son complementarios si la suma de sus ángulos es igual a 90o.
Si conocemos un ángulo, su ángulo complementario se puede encontrar restando la medida del mismo a 90o.
Ejemplo: ¿Cuál es el ángulo complementario de 43o?
Solución: 90o  -  43o  =  47o Dos ángulos son suplementarios si la suma de sus grados es igual a 180o.
Si conocemos un ángulo, su ángulo suplementario se puede averiguar restando la medida del mismo a 180o. Ejemplo: ¿Cuál es el ángulo suplementario de 143o?
Solución: 180o  -  143o  =  37o